黑客24小时在线接单网站

怎么联系真的黑客,24小时在线黑客联系方式,24小时在线联系黑客,正规黑客私人接单,黑客QQ联系方式

python自动化渗透工具(python渗透脚本)

本文目录一览:

python中的后渗透|也可用于AWD攻防--shell管理

在平时或者线下AWD的时候,有一个shell管理器可以让我们打到事半功倍的效果。

前提你要能获得别人shell,不然这个也没什么用了。

我这里写好的这个只是一个思路,真正的后渗透工具,远比这个强大。

[图片上传失败...(image-80d3db-1514974826506)]

控制端

主要是三个模块:

获得sock和地址,判断是哪个机器和我们连接的。

以及发送命令出去。进行编码解码。这里有一个坑。

py2和py3的socket我感觉好像不一样,编码自己出现了问题买就去百度解决吧,我这里没啥问题,在我的机器调试好了。

还有就是命令行选项,可以发挥你们的想象自行添加。

得到的shell列表,将其list出来,按照id和ip分开:

如图:

建立一个简单的线程,因为 shellList 好几个函数需要用到,就设置为全局变量。

最后的主函数。建立scoket套接字,加入线程。

讲一下socket对象中两个参数的含义,

socket.AF_INET 代表使用IPv4协议 ,socket.SOCK_STREAM

代表使用面向流的Tcp协议,

也就是说我们创建了一个基于IPv4协议的Tcp Server。

当有多个台机器连接到控制端时,我们要记录这些机器的socket对象

,以便我们可以选择不同的操作对象

服务端

服务端主要就是接受命令并执行发送给控制端。

python调用系统命令有这几种方法,更多的欢迎补充

一开始我是用subprocess,但是有些命令很慢,os.popen简便些。

code:

argparse模块也很好用,智能化一点。

[图片上传失败...(image-f524d5-1514974826506)]

GAME OVER!

Python渗透测试工具都有哪些

网络

Scapy, Scapy3k: 发送,嗅探,分析和伪造网络数据包。可用作交互式包处理程序或单独作为一个库

pypcap, Pcapy, pylibpcap: 几个不同 libpcap 捆绑的python库

libdnet: 低级网络路由,包括端口查看和以太网帧的转发

dpkt: 快速,轻量数据包创建和分析,面向基本的 TCP/IP 协议

Impacket: 伪造和解码网络数据包,支持高级协议如 NMB 和 SMB

pynids: libnids 封装提供网络嗅探,IP 包碎片重组,TCP 流重组和端口扫描侦查

Dirtbags py-pcap: 无需 libpcap 库支持读取 pcap 文件

flowgrep: 通过正则表达式查找数据包中的 Payloads

Knock Subdomain Scan: 通过字典枚举目标子域名

SubBrute: 快速的子域名枚举工具

Mallory: 可扩展的 TCP/UDP 中间人代理工具,可以实时修改非标准协议

Pytbull: 灵活的 IDS/IPS 测试框架(附带超过300个测试样例)

调试和逆向工程

Paimei: 逆向工程框架,包含PyDBG, PIDA , pGRAPH

Immunity Debugger: 脚本 GUI 和命令行调试器

mona.py: Immunity Debugger 中的扩展,用于代替 pvefindaddr

IDAPython: IDA pro 中的插件,集成 Python 编程语言,允许脚本在 IDA Pro 中执行

PyEMU: 全脚本实现的英特尔32位仿真器,用于恶意软件分析

pefile: 读取并处理 PE 文件

pydasm: Python 封装的libdasm

PyDbgEng: Python 封装的微软 Windows 调试引擎

uhooker: 截获 DLL 或内存中任意地址可执行文件的 API 调用

diStorm: AMD64 下的反汇编库

python-ptrace: Python 写的使用 ptrace 的调试器

vdb/vtrace: vtrace 是用 Python 实现的跨平台调试 API, vdb 是使用它的调试器

Androguard: 安卓应用程序的逆向分析工具

Capstone: 一个轻量级的多平台多架构支持的反汇编框架。支持包括ARM,ARM64,MIPS和x86/x64平台

PyBFD: GNU 二进制文件描述(BFD)库的 Python 接口

Fuzzing

Sulley: 一个模糊器开发和模糊测试的框架,由多个可扩展的构件组成的

Peach Fuzzing Platform: 可扩展的模糊测试框架(v2版本 是用 Python 语言编写的)

antiparser: 模糊测试和故障注入的 API

TAOF: (The Art of Fuzzing, 模糊的艺术)包含 ProxyFuzz, 一个中间人网络模糊测试工具

untidy: 针对 XML 模糊测试工具

Powerfuzzer: 高度自动化和可完全定制的 Web 模糊测试工具

SMUDGE: 纯 Python 实现的网络协议模糊测试

Mistress: 基于预设模式,侦测实时文件格式和侦测畸形数据中的协议

Fuzzbox: 媒体多编码器的模糊测试

Forensic Fuzzing Tools: 通过生成模糊测试用的文件,文件系统和包含模糊测试文件的文件系统,来测试取证工具的鲁棒性

Windows IPC Fuzzing Tools: 使用 Windows 进程间通信机制进行模糊测试的工具

WSBang: 基于 Web 服务自动化测试 SOAP 安全性

Construct: 用于解析和构建数据格式(二进制或文本)的库

fuzzer.py(feliam): 由 Felipe Andres Manzano 编写的简单模糊测试工具

Fusil: 用于编写模糊测试程序的 Python 库

Web

Requests: 优雅,简单,人性化的 HTTP 库

HTTPie: 人性化的类似 cURL 命令行的 HTTP 客户端

ProxMon: 处理代理日志和报告发现的问题

WSMap: 寻找 Web 服务器和发现文件

Twill: 从命令行界面浏览网页。支持自动化网络测试

Ghost.py: Python 写的 WebKit Web 客户端

Windmill: Web 测试工具帮助你轻松实现自动化调试 Web 应用

FunkLoad: Web 功能和负载测试

spynner: Python 写的 Web浏览模块支持 Javascript/AJAX

python-spidermonkey: 是 Mozilla JS 引擎在 Python 上的移植,允许调用 Javascript 脚本和函数

mitmproxy: 支持 SSL 的 HTTP 代理。可以在控制台接口实时检查和编辑网络流量

pathod/pathoc: 变态的 HTTP/S 守护进程,用于测试和折磨 HTTP 客户端

Python编程5种常用工具是什么?

【导语】Python是一种开源的编程语言,可用于Web编程、数据科学、人工智能以及许多科学应用,学习Python可以让程序员专注于解决问题,而不是语法,由于Python拥有各式各样的工具,因此更具优势,在进行Python编程学习的时候,了解使用工具和编程基础是主要的,那么Python编程5种常用工具是什么?一起来了解一下吧。

1、IDLE

在安装Python时,默认也会安装IDLE。这是最优秀的Python工具之一。它可以降低Python入门的门槛。它的主要功能包括Python

Shell窗口(交互式解释器)、自动补齐、高亮显示语法以及基本的集成调试器。IDLE轻巧易用,方便学习。但是,它不适用于大型项目。许多程序员都将其作为最佳的Python工具。

2、Scikit-learn

Scikit-learn是数据科学最常使用的Python工具之一。这是一款为机器学习和数据科学而设计的Python工具。该工具主要用于处理分类、回归、聚类、模型选择以及预处理等任务。scikit-Learn最出色的功能是在测试数据集上执行基准测试时,表现出的惊人速度。因此,对于程序员和学生来说,Scikit-learn是最优秀的Python工具之一。

3、Theano

Theano是一款数据科学的Python工具,对于程序员和学生而言,这是一款非常可靠的工具。它是深度学习方面最好的Python工具,因此非常适合深度学习。Theano的设计主旨是用户友好、模块化、易于扩展,而且可以与Python配合使用。它能够以最佳方式表达神经网络。Theano可以在TensorFlow和CNTK等流行的神经网络之上运行。

4、Selenium

Selenium是最佳的Python自动化工具之一。它适用于Python测试的自动化,常常用作Web应用程序的自动化框架。我们可以利用Selenium,通过许多编程语言(包括Java、C#、Python、ruby以及其他许多程序员和学生使用的语言)来编写测试脚本。你还可以在Selenium中集成Junit和TestNG等工具,来管理测试用例并生成报告。

5、Test complete

Testcomplete是另一款非常出色的Python自动化工具。支持Web、移动和桌面自动化测试。更高级的应用需要获得商业许可,而且它还可以帮助学生提高学业成绩。Test

complete还可以像机器人框架一样执行关键字驱动的测试。它拥有最出色的录制以及回放功能,非常实用。

关于Python编程常用工具,就给大家介绍到这里了,以上的五种工具希望大家能够好好利用,工具的使用必然能够更好的简化程序编写,所以还是希望大家能够不断进行技能提升,加油!

红队最喜欢的18 种优秀的网络安全渗透工具

Bishop labs用了两期博客,前后各总结了9个红队工具,共计18个红队使用的优秀渗透工具,其博客文章也提及,这份清单不是决定性的,也仅用于参考。

创建者: @IAmMandatory

用途:允许 谷歌 Chrome 浏览器将受害者的浏览器变成测试代理。

优点: CursedChrome 可以很容易地在红队参与期间模拟恶意浏览器扩展。用来劫持 Chrome 浏览器,绕过大多数 2FA 或其他可能存在的安全保护,并利用 cookie 来访问任何基于网络的目标。

创建者: @symbolcrash1

用途: Universal Loader 是一个 Golang 库,可以跨多个平台(Linux、Windows 和 OSX)从内存中加载共享库,而无需CGO。

优点: Universal Loader 可以用在新的 Apple M1 芯片上,值得一提的是,这个 Golang 库没有使用 memfd,这使它成为第一个这样做的 Golang Linux 加载器。由于这两个原因,Universal Loader 是一个相当令人印象深刻的红队工具。

创建者: QSecure Labs

用途: Overlord 是一个基于 Python 的控制台命令行界面,用于自动化红队基础设施。

优点: 在红队参与期间能够根据需要快速启动安全基础设施非常重要,该工具可以节省大量时间,然后可以将这些时间用于进行一些实际的黑客攻击。

创作者: @LittleJoeTables和@rkervell

用途: Sliver是一个用 Golang 编写的跨平台通用植入框架。

优点: 这个工具是两位 Bishop Fox 研究人员的创意,所以我们的偏见可能会表现出来。类似于商业工具Cobalt Strike。使 Sliver 值得注意的是诸如使用每个二进制混淆的动态代码生成、多个和可扩展的出口协议以及支持多个操作员同时控制植入物等功能。此外,它易于使用且运行速度快。

创作者: @tillson_

用途: 使用 Githound 来定位暴露的 API 密钥和其他围绕 GitHub 浮动的敏感信息。该工具通过模式匹配、提交 历史 搜索和“独特的结果评分系统”工作。

优点: 像 Githound 这样的秘密窃取工具并不少见,但这并没有使这个工具(或其他类似工具)的价值降低。Githound 的一些可能用例包括检测暴露的客户 API 密钥以及员工 API 令牌。如果您进行漏洞赏金,此工具可用于添加书签 - 有些人报告说,由于它,因此获得了数千美元的赏金。

创作者: @browninfosecguy

用途: 这个工具的名字说明了一切,在 PowerShell 中轻松地为 Microsoft Active Directory 设置实验室。

优点: 速度很快,效果很好。可以使用此工具来确保您针对 Active Directory 使用的任何漏洞利用都已完善,然后再将其引入客户端环境。对于只想更轻松地测试 Active Directory 的渗透测试员来说非常有用。

创建者: Microsoft Azure 红队

用途: 可以使用 Stormspotter 更好地可视化 Azure 攻击面;此工具可帮助您绘制 Azure 和 Azure Active Directory 对象。

优点: 类似渗透测试工具BloodHound概念类似,只是该工具是为 Azure 环境设计的。对于任何蓝色或紫色团队成员来说,从防御的角度来看,Stormspotter 也非常有用。

创建者: @Void_Sec

用途: ECG 实际上是一种商业工具。该工具是静态源代码扫描器,能够分析和检测 TCL/ADP 源代码中真实和复杂的安全漏洞。

优点: ECG是一种强大的工具,可以填补令人惊讶的空白。正如 VoidSec 在他们的官方文章中所指出的,TCL代码相当普遍;所以能够彻底分析漏洞可能会非常有帮助。没有很多其他工具可以满足这种独特的需求,无论是商业的还是其他的。

创建者: @TryCatchHCF

用途: 可以使用 DumpsterFire 构建“时间触发的分布式”安全事件来测试红队进攻和蓝队防守。

优点: DumpsterFire 将传统桌面练习提升到一个新的水平,它还使用自动化来在参与期间有效地进行多任务处理(并避开一些更乏味的事情)。DumpsterFire 允许的定制程度令人印象深刻;可以真正定制模拟安全事件来满足独一无二的情况。

10.GhostPack

创建者: SpecterOps ( @SpecterOps )

用途: 借助强大的后开发工具集 GhostPack,可以做各种事情;可以攻击 KeePass 2.X 数据库、复制锁定的文件、篡改 Active Directory 证书等。

优点: GhostPack 是一种满足黑客需求的“一站式商店”。包含的 13 个工具包括非常有用的 Rubeus、Seatbelt 和 SharpUp。Rubeus 是一个 C# 工具集,直接与 Active Directory 环境中的 Kerberos 协议交互,允许直接与 Kerberos 属性(例如票证和常规身份验证)进行通信,然后可以利用这些属性在网络中移动。Seatbelt 是一个 C# 项目,可用于面向安全的主机“安全检查”,而 SharpUp 是一个 C# 工具,可识别本地权限提升路径。这些工具被无数红队和网络渗透测试员使用。

创作者: Benjamin Delpy ( @gentilkiwi )

用途: Mimikatz 可以从 Windows 环境中提取密码和其他凭据。是一种非常流行的渗透测试工具,已经存在了十多年。但 Mimikatz 会定期维护和更新,以确保仍然是最前沿的工具

优点: 将 Mimikatz 视为网络渗透测试的瑞士军刀。带有几个内置工具,对 Kerberoasting、密码转储很有用,你能想到的,Mimikatz 都可以做到。而且 Mimikatz 不仅适用于那里的进攻性安全专业人员——防御性安全团队也可以从中受益(如果你发现自己处于紫色团队场景中,这也是个好兆头)。

创建者: Metasploit 项目 ( @metasploit ),由 Rapid7 与开源社区合作运营

用途: Metasploit 可以说是世界领先的渗透测试框架,由 HD Moore 于 2003 年创建。Metasploit 包括用于渗透测试几乎每个阶段的模块,这有助于其普及。包括约 250 个后利用模块,可用于捕获击键、收集网络信息、显示操作系统环境变量等。

优点: Metasploit 后开发模块非常庞大,有一个模块最突出——Meterpreter 有效载荷。Meterpreter 允许 探索 目标系统并执行代码,并且由于它通过内存 DLL 注入工作,因此不必冒险留下任何操作证据。Metasploit 后开发功能也非常通用,具有适用于 Windows、Linux 和 OS X 的模块。

创作者: 阿德里安·沃尔默( @mr_mitm )

用途: 此后利用工具旨在绕过端点检测和应用程序阻止列表。

优点: 可以使用 PowerHub 传输文件,而不会在测试环境中发出任何安全保护警报,这将使下一次渗透测试更加顺畅和轻松。使用此工具领先于 Windows Defender。

创建者: LOLBAS 项目和亚利桑那州安全工程与研究小组

用途: LOLBAS 是一个字典,用于在 Windows 机器上使用二进制文件查找可能的权限提升路径。LLOLBAS 是与 LOLBAS 协同工作的摄取器。摄取器会在 Windows 机器上的 LOLBAS 列表中查找所有二进制文件,因此无需猜测或对列表进行排序以查找它们(这可能很乏味)。

优点: LOLBAS 项目可搜索机器上可能的权限提升路径,而 LLOLBAS 允许针对特定机器定制这些路径。结合这两个工具,(几乎)在参与中势不可挡。作为一个额外的好处,如果出现需要它们的情况,可以方便地使用离线工具。

创作者: @nil0x42

用途: PHPSploit 充当功能齐全的 C2 框架,通过单行 PHP 后门在 Web 服务器上静默地持久化。

优点: PHPSploit 是非安全参与时手头上的一项了不起的工具——高效、用户友好且运行安静。正如其 GitHub 描述所述,PHPSploit 是“由偏执狂,为偏执狂设计的”。

创作者: 塞瓦加斯

用途: 可以使用 swap_digger 在后期开发或取证期间自动进行 Linux 交换分析。

优点: 在 Linux 交换空间中可以找到各种各样的好东西,从密码和电子邮件地址到 GPG 私钥。Swap_digger 可以梳理这些交换空间并找到高影响力的奖杯,这将使评估更加成功。

创建者: RedCode 实验室

用途: Bashark 是一个后开发工具包,顾名思义,是用编程语言 Bash 编写的。这是一个可以产生巨大结果的简单脚本。

优点: Bashark 工作快速而隐蔽,允许通过创建 Bash 函数来添加新命令,并清除在目标环境中使用脚本后可能留下的任何痕迹。

创作者: AlessandroZ

用途: 使用 BeRoot 项目查找可用于在 Windows、Linux 和 OS X 环境中提升权限的常见错误配置。

优点: 识别常见的错误配置是在网络中立足的最可靠方法之一,因此找到这些错误配置的速度越快越好。BeRoot 项目在这方面提供了极大的帮助。

本文,旨在介绍一些红队工具,供大家了解和参考研究之用,不建议任何人利用网络技术从事非法工作,破坏他人计算机等行为。渗透有风险,入坑需谨慎。法网恢恢,疏而不漏。请正确理解渗透含义,正确利用渗透技术,做网络安全服务的践行者。

python自动化测试框架有哪些

第一种:Robot Framework

作为最重要的python测试框架之一,Robot Framework主要被用在测试驱动类型的开发与验收中。虽然由python开发而来,但是它也可以在基于.net的Ironpython和基于Java的Jython上运行。同时,作为一个python框架,Robot还能够兼容诸如Windows、MacOS、Linux等平台。

在使用Robot Framework之前,需要先安装python2.7.14及以上版本,在这里推荐大家使用python3.6.4,以确保适当的注解能够被添加到代码段中,并能够跟踪程序的更改,同时,您还需要安装python包管理器--pip。

第二种:Pytest

适用于多种软件测试的Pytest,是另一个python类型的自动化测试框架。凭借着开源和易学的特点,该工具经常被QA团体、开发团体、个人团体以及各种开源项目所使用。鉴于Pytest具有断言重写之类的实用功能,许多大型互联网应用,如Dropbox、Mozilla,都已经从下面将要提到的unittest切换到了Pytest之上。

除了基本的python知识,用户并不需要更多的技术储备。另外,用户只需要有一台带有命令行界面的测试设备,并且安装好了python包管理器以及可用于开发的IDE工具。

第三种:UnitTest/PyUnit

受到Junit启发的UnitTest/PyUnit,也是一种标准化的针对单元测试的python类自动化测试框架。它的基类TestCase提供了各种断言方法、以及所有清理和设置的例程。因此,TestCase子类中的每一种方法都是以test作为名词点缀,以标识它们能够被作为测试用例所运行。用户可以使用load方法和TestSuite类来分组、并加载各种测试。当然,也可以通过联合使用,来构建自定义的测试运行器。正如我们使用Junit去测试Selenium那样,UnitTest也会用到unittest-sml-reporting,并能生成各种XML类型的报告。

第四种:Behave

行为驱动开发是一种基于敏捷软件开发的方法。它能够鼓励开发人员、业务参与者和QA人员,三者之间的协作。python测试框架Behave允许团队避开各种复杂的情况,去执行BDD测试。从本质上说该框架与SpecFlow和Cucumber相似,常被用于执行自动化测试。用户可以通过简单易读的语言来编写测试用例,并能够在其执行期间粘贴到代码之中。而且,那些被设定的行为规范与步骤,也可以被重用到其他的测试方案中。

第五种:Lettuce

Lettuce是另一种基于Cucumber和python的行为驱动类自动化工具。Lettuce主要专注于那些具有行为驱动开发特性的普通任务。它不但简单易用,而且能够使得整个测试过程更流畅、甚至更有趣。

您需要安装带有IDE的python2.7.14及以上版本。当然,您也可以使用pycharm或任何其他IDE工具。同时,您还需要安装python包管理器。

  • 评论列表:
  •  黑客技术
     发布于 2023-03-15 02:36:54  回复该评论
  • 试时,表现出的惊人速度。因此,对于程序员和学生来说,Scikit-learn是最优秀的Python工具之一。3、TheanoTheano是一款数据科学的Python工具,对于程序员和学生而言,这是一款非常可靠的工具。它是深度学习方面最好的Python工具,

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.