本文目录一览:
- 1、vue添加csp头
- 2、CSP策略及绕过方法
- 3、weblogichost头攻击配置
- 4、Chrome 是怎么过滤反射型 XSS 的呢
- 5、Content-Security-Policy(CSP)漏洞,解决方案
vue添加csp头
vue ,react 都对基本数据进行了转义,同时,许多基于 MVVM 框架的单页面应用不需要刷新 URL 来控制 view。但代码疏忽还是有 xss 可能性,所以使用 CSP 策略可以双重保险,避免人为的疏忽导致 XSS 漏洞。
到此这篇关于vue使用csp的文章就介绍到这了,更多相关vue使用csp内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
CSP策略及绕过方法
XSS的时候经常要绕过CSP,这里总结一下
一个CSP头由多组CSP策略组成,中间由分号分隔,就像这样:
其中每一组策略包含一个 策略指令 和一个 内容源 列表
default-src 指令定义了那些没有被更精确指令指定的安全策略。这些指令包括:
script-src定义了页面中Javascript的有效来源
style-src定义了页面中CSS样式的有效来源
img-src定义了页面中图片和图标的有效来源
font-src定义了字体加载的有效来源
connect-src定义了请求、XMLHttpRequest、WebSocket 和 EventSource 的连接来源。
child-src 指定定义了 web workers 以及嵌套的浏览上下文(如frame和iframe)的源。
内容源有三种:源列表、关键字和数据
源列表是一个字符串,指定了一个或多个互联网主机(通过主机名或 IP 地址),和可选的或端口号。站点地址可以包含可选的通配符前缀 (星号, '*'),端口号也可以使用通配符 (同样是 '*') 来表明所有合法端口都是有效来源。主机通过空格分隔。
有效的主机表达式包括:
http://* .foo.com (匹配所有使用 http协议加载 foo.com 任何子域名的尝试。)
mail.foo.com:443 (匹配所有访问 mail.foo.com 的 443 端口 的尝试。)
(匹配所有使用 https协议访问 store.foo.com 的尝试。)
如果端口号没有被指定,浏览器会使用指定协议的默认端口号。如果协议没有被指定,浏览器会使用访问该文档时的协议。
CSP的设置可能情况太多,这里只讨论几个比较典型的情况。
在default-src 'none'的情况下,可以使用meta标签实现跳转
在允许unsafe-inline的情况下,可以用window.location,或者window.open之类的方法进行跳转绕过。
CSP对link标签的预加载功能考虑不完善。
在Chrome下,可以使用如下标签发送cookie(最新版Chrome会禁止)
在Firefox下,可以将cookie作为子域名,用dns预解析的方式把cookie带出去,查看dns服务器的日志就能得到cookie
有些网站限制只有某些脚本才能使用,往往会使用script标签的nonce属性,只有nonce一致的脚本才生效,比如CSP设置成下面这样:
那么当脚本插入点为如下的情况时
可以插入
这样会拼成一个新的script标签,其中的src可以自由设定
Blackhat2017上有篇 ppt 总结了可以被用来绕过CSP的一些JS库。
例如假设页面中使用了Jquery-mobile库,并且CSP策略中包含"script-src 'unsafe-eval'"或者"script-src 'strict-dynamic'",那么下面的向量就可以绕过CSP:
在这个PPT之外的还有一些库也可以被利用,例如RCTF2018中遇到的amp库,下面的标签可以获取名字为FLAG的cookie
1.如果页面A中有CSP限制,但是页面B中没有,同时A和B同源,那么就可以在A页面中包含B页面来绕过CSP:
2.在Chrome下,iframe标签支持csp属性,这有时候可以用来绕过一些防御,例如" "页面有个js库会过滤XSS向量,我们就可以使用csp属性来禁掉这个js库。
meta标签有一些不常用的功能有时候有奇效:
meta可以控制缓存(在header没有设置的情况下),有时候可以用来绕过CSP nonce。
meta可以设置Cookie(Firefox下),可以结合self-xss利用。
weblogichost头攻击配置
1. HTTP Host头攻击
从HTTP / 1.1开始,HTTP Host标头是必需的请求标头。它指定客户端要访问的域名。例如,当用户访问时,其浏览器将组成一个包含Host标头的请求,如下所示:
GET /web-security HTTP/1.1
Host: example.net
HTTP Host头的目的是帮助识别客户端要与之通信的后端组件。如果请求不包含Host头或者格式不正确,则在将传入请求的应用程序时可能会导致问题。
从历史上看,这种漏洞并不存在太大问题,因为每个IP地址只会被用于单个域的内容。如今,很大程度上是由于同一个IP上存在多个Web应用程序(不同端口,不同域名解析等),通常可以在同一IP地址访问多个网站和应用程序。这种方法的普及也部分是由于IPv4地址耗尽所致。
当可以通过同一IP地址访问多个应用程序时,最常见的原因是以下情况之一:
虚拟主机
单个Web服务器托管多个网站或应用程序。这可能是具有单个所有者的多个网站,但是也可能是不同所有者的网站托管在同一个共享平台上。它们都与服务器共享一个公共IP地址。
通过代理路由流量
网站托管在不同的后端服务器上,但是客户端和服务器之间的所有流量都通过代理系统进行路由。这可能是一个简单的负载平衡设备或某种反向代理服务器。在客户通过内容分发网络(CDN)访问网站的情况下,这种设置尤其普遍。
在上面两种种情况下,即使网站托管在单独的后端服务器上,它们的所有域名也都解析为中间组件的单个IP地址。这带来了与虚拟主机相同的问题,因为反向代理或负载平衡需要知道每个请求到的哪个后端上。
HTTP Host头的作用就在于,指定请求应该发送到那个应用程序的后端服务器上。打个比方,一封信需要送到居住在公寓楼中的某人手中,整个公寓有许多房间,每个房间都可以接受信件,通过指定房间号和收件人(也就是HTTP Host头)来将信封送到指定的人手中。
3. 什么是HTTP Host头攻击
一些网站以不安全的方式处理Host头的值。如果服务器直接信任Host头,未校验它的合法性,则攻击者可能能够使用此可控变量来注入Host,以操纵服务器端的行为。
现成的Web应用程序通常不知道将它们部署在哪个域上,除非在安装过程中在配置文件中手动指定了该域。例如,当他们需要知道当前域以生成电子邮件中包含的绝对URL时,他们可能依赖于Host头中的值:
a href="['HOST']/support"联系支持/a
Host头值还可以用于不同网站系统之间的各种交互。
由于Host头实际上是用户可控制的,因此这种做法可能导致许多问题。如果未校验或者直接使用Host头,则Host头可以与一系列其他漏洞“组合拳”攻击,比如:
缓存投毒
特殊业务功能的逻辑漏洞
基于路由的SSRF
经典服务端漏洞,如SQL注入(当Host被用于SQL语句时)等
4. 如何发掘HTTP Host头攻击
首先要判断服务端是否检测Host头?检测完了是否还使用Host头的值?
通过修改Host的值,如果服务端返回错误信息:
30b04453d11b44a56c903cc387f17296.png
则说明服务端检测了Host的内容。至于有没有使用Host头的值,有以下几种方法去发掘:
修改Host值
简单的来说,可以修改HTTP头中的Host值,如果观察到响应包中含有修改后的值,说明存在漏洞。
但有时候篡改Host头的值会导致无法访问Web应用程序,从而导致“无效主机头”的错误信息,特别是通过CDN访问目标时会发生这种情况。
添加重复的Host头
添加重复的Host头,通常两个Host头之中有一个是有效的,可以理解为一个是确保请求正确地发送到目标服务器上;另一个则是传递payload到后端服务器中。
GET /example HTTP/1.1
Host: vulnerable-website.com
Host: attackd-stuff
使用绝对路径的URL
尽管许多请求通常在请求域上使用相对路径,但是也同时配置了绝对URL的请求。
GET HTTP/1.1
Host: attack-stuff
有时候也可以尝试不同的协议,如HTTP或HTTPS。
添加缩进或换行
当一些站点block带有多个Host头的请求时,可以通过添加缩进字符的HTTP头来绕过:
GET /example HTTP/1.1
Host: attack-stuff
Host: vulnerable-website.com
注入覆盖Host头的字段
与Host头功能相近的字段,如X-Forwarded-Host、X-Forwarded-For等,这些有时候是默认开启的。
GET /example HTTP/1.1
Host: vulnerable-website.com
X-Forwarded-Host: attack-stuff
诸如此类,还有其他的字段:
X-Host
X-Forwarded-Server
X-HTTP-Host-Override
Forwarded
忽略端口仅校验域名
当修改、添加重复Host头被拦截的时候,可以尝试了解Web应用程序是怎样解析Host头的。
比如,一些解析算法会忽略Host头中的端口值,仅仅校验域名。这时候可以将Host修改为如下形式:
GET /example HTTP/1.1
Host: vulnerable-website.com:attack-stuff
保持域名不变,修改端口值为非端口号的其他值(非数字), 将Host头攻击的payload放在端口值处,同样能进行Host头攻击。
5. HTTP Host头攻击漏洞示例
5.1 密码重置中毒
根据HTTP Host头攻击的攻击特点,它被广泛应用于密码重置中毒:攻击者可以操纵网站在重置密码情况下生成的密码重置链接,使其发送攻击者指定的域下,利用此来窃取重置任意用户密码的令牌。
1c2aa7d6f7e77ca7c2bd09feee527087.png
一个重设密码(忘记密码)功能的大致流程如下:
用户输入其用户名或电子邮件地址,然后提交密码重置请求。
该网站检查该用户是否存在,然后生成一个临时的、唯一的、复杂的令牌,该令牌与后端的用户帐户相关联。
该网站向用户发送一封电子邮件,其中包含用于重置其密码的链接。重置令牌的参数包含在相应的URL中:
4. 当用户访问此URL时,网站将检查提供的令牌是否有效,并使用它来确定要重置哪个帐户。如果一切都符合,则可以进入用户重置密码步骤。最后,令牌被销毁。
以上步骤的安全性依赖于:只有目标用户才能访问其电子邮件,从而可以访问其唯一的令牌。
密码重置中毒是窃取此令牌以更改另一个用户密码的一种漏洞。
如果网站重置密码的流程完全依赖用户的可控输入(如HTTP Host头),这可能导致密码重置中毒:
1. 攻击者获取受害者的用户名或者电子邮件,作为提交重置密码的请求,攻击者会拦截请求并修改HTTP Host头为其指定的域,如evil-user.net
2. 受害者会收到一封重置密码的邮件,但由于攻击者修改了Host头,而web程序生成重置链接又完全依赖于Host头,导致生成以下URL:
3. 如果受害者点击了该链接,重置密码的令牌就会发送到攻击者的服务器 evil-user.net 上
4. 当攻击者获取到虫子密码的令牌之后,就会进行相应的构造访问真实重置密码的URL进行密码重置。
5.1.1 密码重置中毒—基础
详细了解了上面的密码重置中毒的流程和原理之后,这里通过HTTP Host头攻击导致的基础的密码重置中毒来演示。
首先输入用户名或者用户的电子邮箱来重置指定用户的密码:
534a1d062ccc3813b6596fdec0bb475b.png
提交之后,会发送一封重置密码的电子邮件到wiener用户的邮箱中(数据包如右图):
7c47a2e653a4fcbbaeae1687f914d093.png
注意重置密码的链接,可能是受Host头的值的影响?
我们来验证一下是否存在HTTP Host头攻击,修改Host头的值为 baidu.com:
8901c053cc8c3e6f0383f5f61b14d549.png
发现请求是可以被后端服务器接收的,所以是存在HTTP Host头攻击的。
这里就输入受害用户carlos进行重置密码,然后抓包将Host头的值改为我们自己的服务器:
ec1f439fbc6013f1b4f71011a2885947.png
然后在我们自己的服务器上就可以通过访问日志看到被窃取的重置密码Token:
c3b81283ee2a440dcf205a1ab344ab32.png
然后根据已知链接规律,构造重置密码的链接:
1a4ba4a58416c68b3f513ba1239f76d9.png
随即进入输入新密码的界面,密码重置中毒成功。
5.1.2 密码重置中毒—注入覆盖Host头的字段
有时候直接修改Host头、添加重复Host头的值以及混淆Host头都不行:
3ca0c53bfef0d9b47a9f788eb484f40f.png
可以尝试使用与Host头功能相同的HTTP字段,如X-Forwarded-Host、X-Forwarded-For等,可以进行Fuzz:
cbb645bac4d5b28e8b91c39b174a0767.png
实际上他能够被 X-Forwarded-Host 字段影响,导致Host头攻击,当同时添加多个字段使请求被拦截时,可以尝试类似排除法、二分法来排查哪个字段有效。
对受害用户carlos进行密码重置投毒:
53fd95a8a051dd84951094b4e3e79502.png
然后构造链接即可:
efb5ab58ec4a711faa6f4dac736e069a.png
5.1.3 重置密码中毒—Dangling Markup技术
首先简单介绍一下 Dangling Markup技术:
Dangling markup技术
Dangling markup技术, 是一种无需脚本即可窃取页面内容的技术,它使用图像等资源(结合CSP运行的策略)将数据发送到攻击者控制的远程位置。当反射型XSS不工作或被内容安全策略(CSP)阻止时,它非常有用。其思想是插入一些未完成状态的部分HTML,例如图像标记的src属性,页面上的其余标记关闭该属性,但同时将两者之间的数据(包含窃取页面的内容)发送到远程服务器。
例如,我们在反射型XSS注入点上注入这样一个img标签:
img src="?
则注入点和下一个双引号的代码将会发送到攻击者的 服务器, 其中被发送的代码或者内容可能包含一些敏感信息, 例如CSRF Token等, 配合反射型XSS以完成CSRF的利用。
关于 Dangling Markup技术 的实战意义可以参考博主之前的文章:绕过CSP之Dangling markup技术
什么时候可以使用 Dangling Markup技术 呢?与我们这篇文章的主题有什么关系呢?
我们直接进入主题,当输入需要重置密码的用户名后,该用户的邮箱内会收到如下邮箱:
67a4c2bc755ebbb44847d23189d30422.png
有一个跳转到登录界面的链接,后面紧接着重置之后的随机密码。
此时考虑一下,该链接是否是从Host头取值而来?只要这个值可控,那么就可以利用Host头攻击实施 Dangling Markup攻击,包含住链接后面紧跟着的密码,再结合Host头攻击将请求指定到攻击者服务器上。一个漫天过海的窃取行为就完成了。
第一步,寻找Host头攻击点:
通过Fuzz,可发现Host头攻击类型为 忽略端口仅校验域名。即服务端在校验Host域的时候,仅校验了域名,忽略了后面的端口号,造成端口值可控(可以是数字或字符):
904608f5a5bb3404d1ef62f6c92481b9.png a59bf77cc52ad88158c7fdc06202e54b.png
通过在Host头的端口中注入payload,依旧可以实现Host头攻击。
第二步,借助可控变量 Host:ip:port 来实施 Dangling Markup技术,从而将后面的密码外带到攻击者服务器上:
注意,需要闭合此处的双引号出去,经过尝试,输入单引号时,服务端会自动转为双引号,故这里通过单引号将双引号闭合,然后添加自定的a href=xxx.attack-domain标签将密码外带:
184e31cb9b0426e30db33340e2e16c91.png
原本的正常HTML是这样的:
ed4e92688d41cd5e90434d73f12aa811.png
通过Dangling Markup技术 在a标签的链接中注入? 符,使得后面的值在双引号闭合之前全部被当做URL参数请求到攻击者服务器上:
b90e561f45ba0a4e1df4f0363069921e.png
这也是 Dangling Markup技术 的精髓所在,该技术的核心点在于:
可控变量后面是否接着需要窃取的关键数据(包括Token、密码等)
在攻击者服务器上可以看到被Host头攻击转发上来的请求,里面成功窃取了受害者重置后的密码:
d1f9d32d9c0a753a3088e81d382ce9e6.png
5.2 Host头攻击+缓存投毒
当存在Host头攻击的web站点不存在密码重置的功能的时候,此时该漏洞就显得没有影响,因为不可能驱使用户去抓包修改Host头,辅助攻击者完成一系列的攻击。
但是,如果目标站点使用Web缓存,则可以通过缓存投毒给其他用户提供带有病毒的缓存响应。此时的Host头攻击漏洞转变为类似XSS存储型类的漏洞。要构造Web缓存投毒攻击:
1. 需要寻找映射到其他用户请求的缓存键;
2. 下一步则是缓存此恶意响应;
3. 然后,此恶意缓存将提供给尝试访问受影响页面的所有用户。
第一步,寻找Host头攻击点:
通过对站点的主页添加重复的Host值,可以达到覆盖的效果,并验证存在Host头攻击:
b09b4eeacd00d364633ccda68d1de500.png
第二步,寻找是否使用了Web缓存?缓存键是什么?
从上图中也可以发现,站点使用了Wen缓存功能,并且配合Host头攻击,可以缓存/resources/js/tracking.js资源文件。
第三步,在攻击者服务器上创建一个同名的 /resources/js/tracking.js资源文件,内容为:
alert(document.cookie);
然后通过Host头注入攻击者服务器域名,可以看到在响应中正确地对应了我们的 /resources/js/tracking.js资源文件:
8458208389ca34f2736aea5e82afc11e.png
发送多次请求,使该请求的响应变为缓存:
200f4558b179f6aa8cd8bda18f763b66.png
当其他用户请求站点主页时,服务端就会提供该恶意缓存给用户,造成缓存投毒。
5.3 Host头攻击绕过访问控制
出于安全考虑,通常网站对某些功能的访问限制为内部用户使用。但是通过Host头攻击一定可能上可以绕过这些限制。
对于一个站点,从发现Host头攻击到利用,下面来展示一个完整的流程:
第一步,访问主页,随意修改Host的值:
9649967593356ece9722484a91980ff3.png
注意,这里的Host的值不会出现响应包中,但是依然可能存在Host头攻击,因为响应依然成功,说明服务端没有对Host头做验证。
第二步,寻找敏感页面,通过 /robots.txt 知道 /admin 为做了访问控制的页面:
d3fd91199b6c914ec44a0b7659f56e1d.png
可以错误信息提示,/admin 页面只允许本地用户访问。
第三步,将Host改为服务端内部地址,从而绕过IP访问控制:
c66736849f5149d01997ea9edbf9f1ce.png
5.4 Host头攻击+SSRF
Host头攻击可能会导致基于路由的SSRF攻击,称为:Host SSRF Attack。
经典的SSRF攻击通常基于XXE或可利用的业务逻辑,将用户可控的URL作为HTTP请求发送;而基于路由的SSRF依赖于云部署的体系结构中,包括负载均衡和反向代理,这些中间件将请求分配发送到对应的后端服务器处理,如果服务端未校验Host头转发的请求,则攻击者可能会将请求发送(重定向)到体系中的任意系统。
这可能需要知道内部系统的IP地址(私有地址),一般可以通过信息收集或者Fuzz来判断有效的私有IP地址(如枚举192.168.1.1/16)。
5.4.1 基础Host头攻击+SSRF
比如,普通方式访问不到 /admin 页面(404):
774952d6bc5c1f9c84078f832d213f06.png
猜测 /admin 存在于内网中,需要内网机器才能访问,但是配合Host头攻击+SSRF可以绕过并访问。
第一步,判断Host是否被使用,可用DNSLog外带
这里我使用Burp自带的 “Burp Collaborator client” 来实现外带:
fe89ddd297619cc7283a92ba551a877e.png
说明服务端是根据Host头的域名来请求资源的。
第二步,基于Host头的SSRF探测内网主机
假如一些敏感的页面(比如管理页面),深处于内网,外网无法访问,但是通过Host头攻击+SSRF可达到绕过访问控制,从而访问内网资产,这里Fuzz内网的IP的C段为192.168.0.0/24,直接利用Intruder枚举:
a450a6e1f580ed2201f1e7a20d8c7395.png 8f19202c9c4fc0a81696f084f2066d1d.png
得到内网IP为192.168.0.240
第三步,访问内网资源
构造 /admin 页面,在Host处换位内网IP:
4522a7e735f469b8221d677c8b6a1966.png
5.4.2 Host头攻击+SSRF—使用绝对路径的URL
有时候服务端会校验Host头的值,如果Host被修改,服务端会拒绝一切修改过后的请求:
591a625e712178e117db63b2d5e217fc.png
普通请求通常在请求域上使用相对路径,但是,服务端也同时可能配置了绝对URL的请求,采用如下形式可绕过对Host的验证:
GET HTTP/1.1
4030f968be73cbd6bf90f8e61dde4d2a.png
接着用 “Burp Collaborator client” 进行外带:
6b68718a8514a4b9803f40b8d227d959.png
外带成功,说明Host头被服务端使用来向指定域名请求资源,直接SSRF爆破内网:
675515a890884884ce25786619575ca2.png
访问内网页面:
4e7c3841b5c7ee2aaa0e6f3bf75e4bad.png
6 HTTP Host头攻击防护
最简单的方法是避免在服务器端代码中完全使用Host头,可以只使用相对URL。
其他方法包括:
6.1 正确配置绝对域名URL
当必须使用绝对域名URL时,应在配置文件中手动指定当前域的URL,并引用配置的值,而不是从HTTP的Host头中获取。这种方法可防止密码重置的缓存投毒。
6.2 白名单校验Host头的域
如果必须使用Host头,需要正确校验它的合法性。这包括允许的域,并使用白名单校验它,以及拒绝或重定向对无法识别的主机请求。这包括但不仅限于单个web应用程序、负载均衡以及反向代理设备上。
6.3 不支持主机头覆盖
确保不适用与Host头功能相近的字段,如X-Forwarded-Host、X-Forwarded-For等,这些有时候是默认开启的。
值得一提的是,不应该将内网使用的Host主机(不出网)与公网的应用程序托管在同一个服务器上,否则攻击者可能会操纵Host头来访问内部域。
Chrome 是怎么过滤反射型 XSS 的呢
首先要说明的是 它是webkit的一个模块,而非chrome ,所以Safari和360安全浏览器极速模式等webkit内核的浏览器都有XSS过滤功能.
过滤方式:
通过模糊匹配 输入参数(GET query| POST form data| Location fragment ) 与 dom树,如果匹配中的数据中包含跨站脚本则不在输出到上下文DOM树中.另外,匹配的规则跟CSP没有什么关系,最多是有参考,CSP这种规范类的东西更新速度太慢跟不上现实问题的步伐.
关闭模式:
因为它有可能影响到业务,所以浏览器提供了关闭它的HTTP响应头.
X-XSS-Protection: 0
绕过方式:
因为专门做这方面的原因所以对绕过也有所了解,目前我发布过的一个bypass 0day还可以继续使用.
svgscript xlink:href=data:,alert(1)/script/svg
Content-Security-Policy(CSP)漏洞,解决方案
Content-Security-Policy内容安全策略 (CSP) 是一个额外的安全层,用于检测并削弱某些特定类型的攻击,包括跨站脚本 (XSS) 和数据注入攻击等。无论是数据盗取、网站内容污染还是散发恶意软件,这些攻击都是主要的手段。CSP 的实质就是白名单制度,开发者明确告诉客户端,哪些外部资源可以加载和执行,等同于提供白名单。它的实现和执行全部由浏览器完成,开发者只需提供配置。CSP 大大增强了网页的安全性。攻击者即使发现了漏洞,也没法注入脚本,除非还控制了一台列入了白名单的可信主机。
注意:CSP开启可能会导致js、css出现报错,所以需要正确的配置开始CSP策略。
启用 CSP方法:一种是通过 HTTP 头信息的Content-Security-Policy的字段,另一种是通过网页的meta标签。
第一种:修改 nginx 配置文件
在nginx.conf 配置文件中,增加如下配置内容:
第二种:通过网页的meta标签
该指令说明:允许自身css、js和高德地图api、地图数据。
CSP 指令说明:
default-src : 定义针对所有类型(js/image/css/font/ajax/iframe/多媒体等)资源的默认加载策略,如果某类型资源没有单独定义策略,就使用默认的。
script-src : 定义针对 JavaScript 的加载策略。
style-src : 定义针对样式的加载策略。
worker-src:worker脚本。
img-src : 定义针对图片的加载策略。
font-src : 定义针对字体的加载策略。
media-src : 定义针对多媒体的加载策略,例如:音频标签audio和视频标签video。
object-src : 定义针对插件的加载策略,例如:object、embed、applet。
child-src : 定义针对框架的加载策略,例如: frame,iframe。
connect-src : 定义针对 Ajax/WebSocket 等请求的加载策略。不允许的情况下,浏览器会模拟一个状态为400的响应。
sandbox : 定义针对 sandbox 的限制,相当于 iframe的sandbox属性。
report-uri : 告诉浏览器如果请求的资源不被策略允许时,往哪个地址提交日志信息。
form-action : 定义针对提交的 form 到特定来源的加载策略。
referrer : 定义针对 referrer 的加载策略。
reflected-xss : 定义针对 XSS 过滤器使用策略。